Cytotoxic Quassinoids from Simaba cedron

Akira Ozeki,[†] Yukio Hitotsuyanagi,[†] Eriko Hashimoto,[†] Hideji Itokawa,[†] Koichi Takeya,^{*,†} and Sergio de Mello Alves[‡]

Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan, and EMBRAPA/CPATU, Belem, Para, Brazil

Received January 29, 1998

Four new quassinoids, cedronolactones A–D (1–4), together with nine known compounds, simalikalactone D (5), chaparrinone (6), chaparrin (7), glaucarubolone (8), glaucarubol (9), samaderine Z (10), guanepolide (11), ailanquassin A (12), and polyandrol (13), were isolated from the wood of *Simaba cedron*. The chemical structures of 1–4 were elucidated on the basis of their chemical and spectral properties. Cedronolactone A (1) was shown to exhibit a significant in vitro cytotoxicity (IC₅₀ 0.0074 μ g/mL) against P-388 cells.

During a survey of new antitumor substances from higher plants,¹ especially those belonging to the Simaroubaceae,^{2–8} we have found that the crude extract of *Simaba cedron* Planchon (Simaroubaceae) showed cytotoxic activity against P-388 leukemia cells. Activityguided chromatographic purification using P388 cells led to the isolation of four novel quassinoids, cedronolactones A–D (**1**–**4**) and nine known quassinoids, simalikalactone D (**5**),⁹ chaparrinone (**6**),^{10,11} chaparrin (**7**),¹² glaucarubolone (**8**),^{10,13} glaucarubol (**9**),^{14,15} samaderine Z (**10**),¹⁶ guanepolide (**11**),¹⁷ ailanquassin A (**12**),¹⁸ and polyandrol (**13**) (Chart 1).¹⁹ In this paper, the structural elucidation of **1**–**4** and the cytotoxic activity of **1**–**13** are reported.

Results and Discussion

The methanolic extract prepared from the wood of S. *cedron* was partitioned between CHCl₃ and H₂O, and then *n*-BuOH and H₂O. The CHCl₃-soluble material was subjected to Si gel column chromatography (CHCl3-MeOH) to give eight fractions. Further purification of the fourth fraction using MPLC (Si gel) and HPLC (ODS Si gel) furnished two new quassinoids, cedronolactones A (1) and B (2), and five known ones, simalikalactone D (5), chaparrinone (6), glaucarubolone (8), guanepolide (11), and ailanquassin (12). The *n*-BuOH-soluble material was applied to Diaion HP-20 column chromatography (H₂O–MeOH). The fraction eluted with 20-60%MeOH was further chromatographed using MPLC and then HPLC to give the new quassinoids, cedronolactones C (3) and D (4), and known compounds, chaparrin (7), glaucarubolone (8), glaucarubol (9), samaderine Z (10), and polyandrol (13).

Cedronolactone A (1) was obtained as colorless needles, and its molecular formula was determined to be $C_{25}H_{34}O_9$ by HREIMS. Its IR, UV, and ¹³C NMR spectra showed the presence of an α,β -unsaturated ketone, a δ -lactone, and an ester carbonyl group. The ¹H and ¹³C NMR spectra of 1 were very similar to those of simalikalactone D (5),⁹ except for the ester side-chain moiety at the C-15.

Analysis of the H-H COSY, HMBC, and HMQC spectra revealed that compound **1** possesses a 3-methylbutanoyloxy group at C-15 position. From these data and NOESY spectra, the structure of cedronolactone A (**1**) was established as shown.

Cedronolactone B (2) was characterized as colorless needles, whose molecular formula of C₁₉H₂₄O₇ was determined by HREIMS. The IR, UV, and NMR spectral data showed the presence of an α,β -unsaturated- γ -lactone and a δ -lactone and were very similar to those of ailanquassin A (12).¹⁸ However, the proton resonances of Me-18, H- 6α , and H-5 were observed at 0.44, 0.39, and 0.12 ppm more upfield, respectively, than analogous data for compound 12. Furthermore, NOESY correlations were observed between H-5 and H-6 α . H-5 and H-9, and H-6 α and Me-18 as shown in Figure 1. These observations indicated that cedronolactone B (2) is the 5*S* epimer of **12**. This structure was confirmed by direct comparison with the authentic compound obtained by selective epimerization of 12 at the C-5 stereocenter.

Cedronolactone C (3) was characterized as colorless needles, and its molecular formula was determined by HREIMS as $C_{19}H_{24}O_8$. Although the IR, UV, MS, and NMR spectral data of **3** were similar to those of **2**, the presence of an additional hydroxyl group was suggested by its molecular formula and NMR spectra. The position of the hydroxyl group was determined by the shifts of H-15 ($\Delta \delta$ 2.12) and C-15 ($\Delta \delta$ 38.0) NMR resonances compared to those of **2**. Consequently, cedronolactone C (**3**) was deduced to be the 5*S* epimer of polyandrol (**13**).¹⁹ The structure of **3** was confirmed by direct comparison with the authentic compound obtained by selective epimerization of **13** at C-5.

Cedronolactone D (4) was characterized as an amorphous solid, with its molecular formula determined as $C_{20}H_{26}O_8$ by HREIMS. Although its spectral data were similar to those of samaderine Z (10), ¹⁶ the C-7 and C-12 resonances of 4 were observed at δ 83.5 and 75.9, respectively, while those of 10 were observed at δ 72.8 and 87.0, respectively, in the ¹³C NMR spectrum. A long-range coupling was observed between H-12 and C-16 in the HMBC spectrum, which indicated that a lactone linkage exists between C-12 and C-16 in com-

S0163-3864(98)00023-8 CCC: \$15.00 © 1998 American Chemical Society and American Society of Pharmacognosy Published on Web 05/05/1998

^{*} To whom correspondence should be addressed. Tel: +81-426-76-3012. Fax: +81-426-76-3021. E-mail: takeyak@ps.toyaku.ac.jp.

[†] Tokyo University of Pharmacy and Life Science.

[‡] EMBRAPA/CPĂTU, Belem.

R=H ailanquassin A (12)

R=OH polyandrol (13)

Chart 1

R=H samaderine Z (10)

R=H cedronolactone B (2) R=OH cedronolactone C (3)

$$\begin{split} R^{1}=&O; \ R^{2}=&H \qquad chaparrinone \ \textbf{(6)} \\ R^{1}=&\alpha-OH, \ \beta-H; \ R^{2}=&H \qquad chaparrin \ \textbf{(7)} \\ R^{1}=&O; \ R^{2}=OH \qquad glaucarubolone \ \textbf{(8)} \\ R^{1}=&\alpha-OH, \ \beta-H; \ R^{2}=OH \qquad glaucarubol \ \textbf{(9)} \end{split}$$

leukemia cells were 0.0074, 6.5, 49, 38, 0.0055, 0.92, >100, 1.4, >100, 2.4, 70, 39 and 17, respectively.

Experimental Section

General Experimental Procedures. Melting points are uncorrected. UV spectra were taken on a Hitachi 557 spectrophotometer. IR spectra were run on a Perkin-Elmer 1710 or a JASCO A-302 spectrophotometer. 1H, 13C, and 2D (COSY, NOESY, HMBC, and HMQC) NMR spectra were measured by a Bruker AM 400 or a AM 500 spectrometer. ¹H NMR chemical shifts are referenced in pyridine- d_5 to residual C₅D₄HN (7.21) ppm); ¹³C NMR chemical shifts are referenced to the solvent (135.5 ppm). Mass spectra were obtained with a VG AutoSpec E or a Finnigan MAT TSQ-700 spectrometer. Preparative HPLC was carried out on a Shimadzu HPLC system using a Wakosil-II 5C₁₈ HG Prep (20×250 mm) column with UV detector. MPLC was carried out using a Kusano C. I. G. system (Kusano, Tokyo, Japan).

Plant Material. The wood of *Simaba cedron* Planchon (Simaroubaceae) was purchased at São Paulo, Brazil, in 1991. The botanical identification was made by Dr. S. de M. Alves. A voucher specimen has been deposited in the herbarium of Tokyo University of Pharmacy Life Science.

Extraction and Isolation. The wood of *S. cedron* (2.0 kg) was extracted with MeOH (3×4 L). The MeOH extract [120 g, IC₅₀ value (μ g/mL) against P-388 cells: 0.7] was partitioned between CHCl₃ and H₂O, and then between *n*-BuOH and H₂O. The CHCl₃-soluble fraction (30 g, IC₅₀ 0.22 μ g/mL) was subjected to column chromatography over Si gel using a CHCl₃–MeOH (1:0–0: 1) gradient system to give eight fractions. The fourth fraction (IC₅₀ <0.1 μ g/mL) was further applied to MPLC (Si gel) using *n*-hexane–EtOAc–MeOH (5:3:1) as solvent system and then to HPLC (ODS Si gel, with mixture of MeOH–H₂O and MeCN–H₂O as solvent

Figure 1. NOESY correlations of 2.

Figure 2. NOESY correlations of 4.

pound **4**. Furthermore, the NOESY correlation between H-9 and H-15 α , as shown in Figure 2, suggested that the configuration of the hydroxyl group at the C-15 was in the β configuration. From the above findings, structure **4** was deduced for cedronolactone D.

Compounds **5**–**13** were identified as simalikalactone D (5), chaparrinone (6), chaparrin (7), glaucarubolone (8), glaucarubol (9), samaderine Z (10), guanepolide (11), ailanquassin A (12), and polyandrol (13) respectively, by comparing their physical and spectral data with those reported in the literature.^{9–19} The IC₅₀ values (μ g/mL) of compounds 1–13 against P-388 lymphocytic

	cedro	molactone A (1)	cedre	onolactone B (2)	cedro	nolactone C (3)	cedro	nolactone D (4)	simali	kalactone D (5)	ailar	iquassin A (12)
												(~-) ut utcom h
position	$\delta_{\rm C}$	$\delta_{\rm H}$ mult. (J/Hz)	$\delta_{\rm C}$	δ _H mult. (J/Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ mult. (J/Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ mult. (J/Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ mult. (J/Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ mult. (J/Hz)
1	82.9 d	4.15 s					84.3 d	4.22 d (2.0)	81.1 d	4.12 s		
2	198.4 s		172.5 s		172.5 s		198.7 s	• •	196.6 s		172.6 s	
3	125.1 d	$6.13 \mathrm{~s}$	120.5 d	5.88 s	120.6 d	5.89 t (1.4)	124.7 d	6.13 q (1.3)	123.2 d	$6.12 \mathrm{~s}$	119.0 d	5.93 s
4	162.9 s		168.2 s		168.0 s		164.8 s	4	$161.1 {\rm s}$		169.9 s	
5	43.7 d	2.91 br d (12)	91.8 d	4.85 s	91.7 d	4.87 s	43.6 d	3.47 br d (12)	42.0 d	2.90 br d (12)	92.2 d	4.97 br s
9	28.3 t	2.21 dt (2.4, 14.7)	47.1 t	2.54 d (15.7)	46.1 t	2.51 d (15.7)	31.3 t	2.13 dt (2.2, 13.4)	26.5 t	2.20 dt (2.7, 14.6)	46.5 t	2.9 3d (16.1)
		1.72 dt (14.7, 2.4)		2.31 dd (15.7, 5.7)		2.27 dd (15.7, 5.2)		1.67 dt (13.4, 2.2)		1.71 dt (14.6, 2.7)		2.32 dd (16.1, 4.7)
7	84.3 d	4.87 t (2.4)	83.7 d	4.72 d (5.7)	83.4 d	4.76 d (5.2)	72.8 d	4.27 br s	82.4 d	4.87 t (2.7)	80.5 d	4.66 d (4.7)
8	46.6 s		55.6 s	r.	56.7 s		50.3 s		46.5 s		57.0 s	
6	43.0 d	2.72 d (4.4)	45.0 d	3.38 s	46.3 d	3.49 s	44.6 d	2.54 d (4.1)	41.3 d	2.71 d (4.5)	44.1 d	3.34 s
10	48.3 s		46.1 s		45.8 s		48.7 s		44.8 s		46.5 s	
11	75.5 d	5.41 t (4.4)	111.7 s		112.0 s		72.9 d	5.53 dd (2.2, 4.1)	78.3 d	5.40 t (4.5)	111.3 s	
12	80.1 d	4.31 d (4.4)	80.2 d	3.97 t (3.6)	81.0 d	4.12 d (3.8)	87.0 d	4.67 t (2.2)	73.7 d	4.31 d (4.5)	83.8 d	3.95 t (4.3)
13	81.2 s		33.3 d	2.35 m	34.6 d	2.64 m	76.9 s		79.5 s		33.4 d	2.38 m
14	53.1 d	2.83 br d (13)	38.9 d	2.11 m	47.1 d	2.52 dd (10.4, 6.1)	58.1 d	2.84 d (2.5)	51.4 d	2.81 br d (13)	38.6 d	2.19 dd (12.5, 6.3)
15	68.9 d	4.95 d (6.2)	30.5 t	3.26 dd (18.2, 13.1)	68.5 d	5.38 d (10.4)	66.5 d	5.95 s	67.1 d	4.93 d (12.7)	30.5 t	3.28 dd (18.4, 12.5)
				2.76 dd (18.2, 5.8)								2.82 dd (18.4, 6.3)
16	168.7 s		169.6 s		173.9 s		173.7 s		166.8 s		170.0 s	
18	22.1 q	1.72 s	16.5 q	2.05 s	16.5 q	$2.01 \mathrm{s}$	22.5 q	1.76 s	22.2 q	1.71 s	16.1 q	2.49 s
19	11.4 q	1.41 s	20.8 q	1.59 s	20.6 q	1.58 s	11.9 q	1.50 s	10.0 q	1.41 s	18.4 q	1.51 s
20	72.3 t	5.01 d (7.4)	72.1 t	3.94 d (8.7)	72.3 t	3.92 s	74.7 t	4.97 d (7.8)	70.5 t	5.00 d (7.4)	72.0 t	3.94 d (8.7)
		3.72 d (7.4)		3.83 d (8.7)		3.92 s		3.74 d (7.8)		3.72 d (7.4)		3.82 d (8.7)
21	23.9 q	1.79 s	12.9 q	1.08 d (7.2)	15.9 q	1.69 d (7.3)	22.8 q	1.78 s	15.0 q	1.78 s	12.7 q	1.11 d (7.2)
1′	171.6 s		I						173.3 s		I	
2,	43.4 t	2.41 dd (7.5, 4.8)							39.7 d	2.60 m		
ж	25.9 d	2.27 m							26.5 t	1.88 m		
4′	22.4 q	1.00 d (6.3)							20.3 q	1.04 t (7.4)		
5,	22.4 q	1.01 d (6.3)							9.6 q	1.26 d (7.0)		
a Measi	Irements	were nerformed in n	vridine-d ₆	at 400 MHz for ¹ H at	nd 100 M	Hz for ¹³ C, ^{b 13} C Mul	tinlicities	were established by	/ DEPT n	ilse sequences.		

Table 1. ¹³C and ¹H NMR Chemical Shifts (δ) for Cedronolactones A–D (1–4), Simalikalactone D (5), and Ailanquassin A (12)^{a,b}

systems) to give cedronolactone A (1, 79 mg) and simalikalactone D (5, 93 mg). The fifth fraction (IC₅₀ 0.17 μ g/mL) was subjected to MPLC (Si gel) using *n*-hexane–EtOAc–MeOH (5:4:1) and then to HPLC (ODS Si gel) using either a MeOH–H₂O or a MeCN–H₂O (20:1–1:1) gradient system to give cedronolactone B (**2**, 25 mg), chaparrinone (**6**, 134 mg), glaucarubolone (**8**, 186 mg), and ailanquassin A (**12**, 40 mg). Repeated MPLC (ODS Si gel) of the sixth fraction using a MeOH–H₂O gradient system (IC₅₀ 4.0 μ g/mL) furnished guanepolide (**11**, 7.5 mg).

The *n*-BuOH-soluble fraction (41 g, IC₅₀ 6 μ g/mL) was applied to HP-20 column chromatography using a H₂O– MeOH (1:0–0:1) gradient system to give seven fractions (A–G). Fraction C (IC₅₀ 21 μ g/mL) was purified by MPLC (Si gel) using CHCl₃–MeOH (9:1) and then HPLC (ODS Si gel), using H₂O–MeOH (17:3), to give cedronolactone C (**3**, 257 mg), polyandrol (**13**, 261 mg), and samaderine Z (**10**, 375 mg). Fraction D (IC₅₀ 16 μ g/mL) was crystallized from MeOH to give a crude crystal, which was then subjected to HPLC (ODS Si gel) to afford chaparrin (**7**, 78 mg), glaucarubolone (**8**, 1.043 g), and glaucarubol (**9**, 1.139 g). Cedronolactone D (**4**, 10 mg) was obtained from the mother liquid by using HPLC (ODS Si gel).

Cedronolactone A (1): colorless needles, mp 185– 188 °C; $[\alpha]^{25}_{D} - 40^{\circ}$ (*c* 0.11, pyridine); UV (EtOH) λ_{max} (log ϵ) 240 (4.02) nm; IR (KBr) ν_{max} 3436, 1752, 1666, 1377, 1346, 1262, 1158, 1118 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; EIMS *m*/*z* 478 [M]⁺ (13), 3460 (7), 376 (6), 358 (19), 340 (17), 301 (15), 255 (18), 236 (22), 195 (36), 152 (22), 135 (24), 111 (29), 84 (51), 55 (100); HREIMS *m*/*z* 4782219 (calcd for C₂₅H₃₄O₉, 478.2203).

Cedronolactone B (2): colorless needles, mp 194– 196 °C; $[\alpha]^{25}_{D}$ –38° (*c* 0.19, pyridine); UV (MeOH) λ_{max} (log ϵ) 213 (3.98) nm; IR (KBr) ν_{max} 3392, 1742, 1709, 1637, 1322, 1256, 1194, 1119 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; EIMS *m*/*z* 364 [M]⁺ (49), 346 (11), 333 (8), 318 (20), 305 (65), 292 (13), 267 (29), 231 (17), 207 (23), 191 (25), 173 (27), 145 (33), 125 (41), 97 (82), 68 (100), 53 (91); HREIMS *m*/*z* 364.1513 (calcd for C₁₉H₂₄O₇, 364.1522).

Cedronolactone C (3): colorless needles, mp 99– 105 °C; $[\alpha]^{25}_{D}$ +75° (*c* 0.44, pyridine); UV (MeOH) λ_{max} (log ϵ) 213 (4.04) nm; IR (KBr) ν_{max} 3510, 1736, 1631, 1316, 1231, 1191, 1104 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; EIMS *m*/*z* 380 [M]⁺ (6), 362 (22), 321 (37), 305 (12), 265 (18), 217 (41), 189 (33), 145 (41), 137 (100), 98 (46), 97 (83), 77 (44); HREIMS *m*/*z* 380.1468 (calcd for C₁₉H₂₄O₈, 380.1471).

Cedronolactone D (4): amorphous solid; $[\alpha]^{25}_{\rm D} - 55^{\circ}$ (*c* 0.10, pyridine); UV (MeOH) $\lambda_{\rm max}$ (log ϵ) 241 (3.86) nm; IR (KBr) $\nu_{\rm max}$ 3539, 3400, 1724, 1697, 1677, 1262, 1113 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; EIMS *m/z* 394 [M]⁺ (53), 376 (57), 343 (15), 279 (16), 271 (24), 253 (43), 225 (57), 207 (100), 169 (69), 149 (63), 105 (52), 91 (83), 69 (61); HREIMS *m/z* 394.1621 (calcd for C₂₀H₂₆O₈, 394.1628).

Selective Epimerization of 12. A solution of **12** (22.2 mg) in pyridine (0.5 mL) was stirred at 150 °C for 24 h under an Ar atmosphere. The solution was evaporated in vacuo. The residue was separated by

HPLC (ODS Si gel) using H_2O -MeOH (25:3) to give **2** (6.7 mg) and recovered **12** (11.1 mg).

Selective Epimerization of 13. A solution of **13** (20.5 mg) in pyridine (0.5 mL) was stirred at 150 °C for 24 h under an Ar atmosphere. The solution was evaporated in vacuo. The residue was separated by HPLC (ODS Si gel) using H_2O -MeOH (25:2) to give **3** (4.5 mg) and recovered **13** (12.0 mg).

Cytotoxic Activity Against P388 Cells.^{20,21} An MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay was performed in 96well plates. The assay is based on the reduction of MTT by the mitochondrial dehydrogenase of viable cells to give a blue formazan product that can be measured spectrophotometrically. Murine P-388 leukemia cells $(3 \times 10^4 \text{ cell/mL})$ were inoculated in each well with 100 μ L/mL of RPMI-1640 medium (Nissui Pharmaceutical Company, Ltd., Tokyo, Japan) supplemented with 5% fetal calf serum (Mitsubishi Chemical Industry Co., Ltd., Tokyo, Japan) and kanamycin (100 μ g/mL) at 37 °C in a humidified atmosphere of 5% CO₂. Various drug concentrations (10 mL) were added to the cultures at Day 1 after transplantation. At Day 3, 20 μ L of MTT solution (5 mg/mL) per well was added to each cultured medium. After a further 4 h of incubation, 100 μ L of 10% sodium dodecyl sulfate-0.01 N HCl solution was added to each well, and the formazan crystals in each well were dissolved by stirring with a pipet. The optical density measurements were made using a microplate reader (Tosoh MPR-A4i) at two wavelengths (550 and 700 nm). In all these experiments, three replicate wells were used to determine each data point.

Acknowledgment. The authors are grateful to the Ministry of Education, Science and Culture, Tokyo, Japan, for financial support through a grant-in-aid for general scientific research.

References and Notes

- (1) Itokawa, H.; Takeya, K. Heterocycles 1993, 35, 1467-1501.
- (2) Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Tanaka, O. Chem. Lett. 1990, 749–752.
- (3) Itokawa, H.; Kishi, E., Morita, H.; Takeya, K. Chem. Pharm. Bull. 1992, 40, 1053–1055.
- (4) Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Iitaka, Y. *Phytochemistry* **1993**, *33*, 691–696.
- (5) Itokawa, H.; Qin, X.-R.; Morita, H.; Takeya, K. J. Nat. Prod. 1993, 56, 1766–1771.
- (6) Takeya, K.; Kobata, H.; Morita, H.; Qin, X.-R.; Itokawa, H. Nat. Med. 1996, 50, 368.
- (7) Takeya, K.; Kobata, H.; Ozeki, A.; Morita, H.; Itokawa, H. J. Nat. Prod. 1997, 60, 642–644.
- (8) Takeya, K.; Kobata, H.; Ozeki, A.; Morita, H.; Itokawa, H. *Phytochemistry*, in press.
- (9) Rodrigues Fo.; E., Fernandes, J. L.; Vieira P. C.; da Silva, M. F. das G. A.; *Phytochemistry* 1993, 34, 501–504.
- (10) Polonsky, J.; Bourguignon-Zylber, N. Bull. Soc. Chim. Fr. 1965, 2793–2799.
- (11) Grieco, P. A.; Collins, J. L.; Moher, E. D.; Fleck, T. J.; Gross, R. S. J. Am. Chem. Soc. 1993, 115, 6078–6093.
- (12) Kubo, I. In *Methods in Plant Biochemistry*; Hostettman, K., Ed.; Academic Press: London, 1990; Vol. 6, pp 179–193.
- (13) Handa, S. S.; Kinghorn, A. D.; Cordell, G. A.; Farnsworth, N. R. J. Nat. Prod. 1983, 46, 359–364.
- (14) Khan, S. A.; Shamsuddin, K. M. *Phytochemistry* **1980**, *19*, 2484–2485.
- (15) Chaudhuri, S. K.; Kubo, I. Phytochemistry 1992, 31, 3961-3964.
- (16) Kitagawa, I.; Mahmud, T.; Yokota, K.; Nakagawa, S.; Mayumi, T.; Kobayashi, M.; Shibuya, H. *Chem. Pharm. Bull.* **1996**, *44*, 2009–2014.

- Polonsky, J.; Varon, Z.; Prange, T.; Pascard, C. *Tetrahedron Lett.* **1981**, 3605–3608.
 Aono, H.; Koike, K.; Kaneko, J.; Ohmoto, T. *Phytochemistry* **1994**, *37*, 579–584.
 Grieco, P. A.; Roest, J. M. V.; Campaigne, M. M. P.-N. E. E.; Carmack, M. *Phytochemistry* **1995**, *38*, 1463–1465.
- (20) Twentyman, P. R.; Luscombe, M. Br. J. Cancer 1987, 56, 279-285.
- (21) Carmichael, J.; DeGraff, W. G.; Gazdar, A. F.; Minna, J. D.; Mitchell, B. *Cancer Res.* 1987, 47, 936–942.

NP980023F